Mathematical modeling and creation of algorithms for analyzing the ranges of the amplitude-frequency response of a vibrating rotary crusher in the software Mathcad

Abstract. The article is devoted to the study of motion laws for rotary vibration crusher. Kinematic and dynamic analysis was performed. Differential equations of rotor motion are solved and analyzed, frequency response and energy consumption graphs in MathCad 15.0 software environment are presented. Verification of the mathematical model was carried out by comparing the results of experimental research with theoretical research. It was proved that the proposed mathematical models are adequate (discrepancy are 7.2 to 12.1%).

Keywords: Lagrange's equations II kind's, differential equations, parameters of oscillations, analytical mechanics, vibrating machine

Introduction
For feeding livestock very often use cheap fodder grain, which is not suitable for food purposes. Usually such grain has high humidity [1, 2]. Dry food grain is rarely used. But the specific energy consumption, which is specified in the technical characteristics for hammer crushers are reliable only for quality dry grain (humidity about 14-16%) [2, 3]. During the grinding of wet (fodder) grain, productivity is significantly reduced and specific energy consumption increases [4]. Therefore, there is a need to develop an equally energy-efficient crusher for both dry and wet grain.

Analysis of literary sources and problem statement
During the destruction process of materials with plasticity properties, energy is used to overcome molecular bonds and irreversible plastic deformations [5, 6]. The energy spent on deformation is converted into heat [7, 8, 9].

With increasing moisture content, fragility and ultimate strength decrease, ductility and ultimate deformation before fracture increase [5, 10].

In addition, during the grinding process forage grains can often be adhesion to the sieve of the wet shredded product [10, 11, 12].

The development of a vibratory crusher consists of many complex stages [13, 14]. The first steps in the development process of a machine are theoretical studies [15, 16]:
1) development of kinematic scheme (the new design should solve the problem of effective grinding (dry and wet grain) and prevent blocking of the sieve with crushed material);
2) kinematics research (these results are the basis for dynamic analysis) [17];
3) dynamics research (these results are the basis for calculating the crusher drive and creating a design drawing) [18].

Using the infrastructure of the laboratory of the process and processing of equipment and food industry Vinnytsia National Agrarian University, a design of vibratory crusher was developed [6, 19, 20]. Sharp disks will be installed in this crusher instead of rectangular plates (hammers). That is the methods of impact and cutting to destroy the material will be combined [19]. Thus, a local overvoltage of surface micro volumes at the places of application of loads will be created [13, 21]. When the disc hits the grain quickly, it causes the sharp blade to sink into the body and create the pressure needed to break the material [8, 22]. In addition, for more intensive sieving of the product that already crushed oscillations of the sieve will be provided [19, 23].

Purpose and tasks of research
The purpose of the research is to development of a mathematical model for the crusher being designed and determination of ranges of amplitude-frequency characteristics in which energy consumption will be rational.

To achieve this goal, it is necessary: a kinematics study performed and to obtain the laws of motion; develop differential equations describing the motion of the disk rotor and energy consumption by the drive; find the solutions of the differential equations and determine the most optimal ranges of values for amplitude-frequency characteristics; check whether mathematical models are adequate by comparing the results of theoretical and experimental studies using a laboratory model of a vibrating crusher.

Materials and methods
Scientific articles position based on the classical theory of mechanical oscillations of the laws of theoretical mechanics and physics, kinematics analysis was done analytical method, the principle of superposition [12, 15].

The machine is represented mathematical model with 6 degrees of freedom, namely the shifting of the centre of mass of the container along with the axis OX (Fig. 1), shifting the centre of mass of the rotor along with the axis OX, shifting the centre of mass of the container along the axis OZ, shifting the centre of mass of the rotor along the axis OZ, angular shifting of the rotor relative to the axis O1Y1, angular shifting of the disc relative to axis O2Y2 [24].

To determine the crusher's laws of motion along each of the independent coordinates (x, y, z, φ1, φ2, φ3), Lagrange's
equations of the second kind will be used [17, 24] (1). In this vibrational system (Fig. 1), four characteristic moving masses can be distinguished in the total mass $m$ (2).

To determine the equations of the generalized linear velocity of the centres of mass of the structural elements of the vibratory disk crusher, the mechanism will be divided into elementary components (Fig. 2), which will be studied separately [25]. To solve and analyze the obtained equations of motion of the executive body of the vibratory disk crusher, the mathematical environment MathCad 15.0 was used [6]. The use of this program allowed us to determine the patterns of change of oscillation parameters depending on the angular velocity of the drive shaft.

![Fig. 1. Calculation scheme for studying: a) kinematics; b) forces and moments](image1)

\[
\begin{align*}
\frac{d}{dt} \frac{\partial T}{\partial x} &= Q_x \\
\frac{d}{dt} \frac{\partial T}{\partial z} &= Q_z \\
\frac{d}{dt} \frac{\partial T}{\partial y} &= Q_y \\
\frac{d}{dt} \frac{\partial T}{\partial \theta_1} &= \phi_1 \\
\frac{d}{dt} \frac{\partial T}{\partial \theta_2} &= \phi_2 \\
\frac{d}{dt} \frac{\partial T}{\partial \theta_3} &= \phi_3
\end{align*}
\]

where $T$ – kinetic energy of the system; $Q_x, Q_z, Q_y, Q_{\phi_1}, Q_{\phi_2}, Q_{\phi_3}$ – generalized resistance forces.

![Fig. 2. Rotary vibration crusher: a – container; b – rotor; c – disc; d – counterweight](image2)

\[
\begin{align*}
m &= m_1 + m_2 + m_3 + m_4; \\
m_1 &= m_c + m_f + m_p; \\
m_2 &= m_c + m_i; \\
m_3 &= m_d; \\
m_4 &= m_ew; \\
m_r &= m_{esh} + m_{cd} + m_{var} + m_{sup} + m_{axles};
\end{align*}
\]

where $m_c$ – mass of frame, kg; $m_m$ – mass of material, kg; $m_f$ – mass of support frame, kg; $m_b$ – mass of bearing units, kg; $m_r$ – rotor weight, kg; $m_c$ – mass of couplings, kg; $m_d$ – mass of impact discs, kg; $m_ew$ – weight of counterweight, kg; $m_{esh}$ – mass of eccentric shaft, kg; $m_{cd}$ – mass of intermediate discs, kg; $m_{var}$ – a mass of eccentric variation mechanisms, kg; $m_{sup}$ – mass of support discs, kg; $m_{axles}$ – mass of disc axles, kg.
As a result of research studies performed earlier, the approximate ranges of oscillation amplitude, vibration velocity, vibration acceleration and oscillation intensity were determined. However, to assess energy efficiency, it is necessary to experimentally investigate the effect of amplitude-frequency characteristics on energy consumption for the crusher drive.

Also, based on previous study [8, 20], a database was adopted, which included the values: the range of angular velocity of the drive shaft \( \omega_2 = 0 \ldots 150 \text{ rad s}^{-1} \), and the time factor interval \( t = 0 \ldots 60 \text{ s} \), as well as the values of the accepted constants [19] of the studied system (Table 1).

<table>
<thead>
<tr>
<th>Constants</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total moving weight, kg</td>
<td>83.2</td>
</tr>
<tr>
<td>- ( m_1 ), kg</td>
<td>32.7</td>
</tr>
<tr>
<td>- ( m_2 ), kg</td>
<td>31.9</td>
</tr>
<tr>
<td>- ( m_3 ), kg</td>
<td>15.1</td>
</tr>
<tr>
<td>- ( m_4 ), kg</td>
<td>5.5</td>
</tr>
<tr>
<td>The distance from the axis of rotation to the center of mass of the rotor ( a ), m</td>
<td>0.005</td>
</tr>
<tr>
<td>Working disk radius ( r_p ), m</td>
<td>0.045</td>
</tr>
<tr>
<td>The radius of the support disk ( r_{sup} ), m</td>
<td>0.14</td>
</tr>
<tr>
<td>The distance from the top of the working disk to the axis of rotation ( r ), m</td>
<td>0.19</td>
</tr>
<tr>
<td>The distance from the axis of rotation to the center of mass of the counterweight ( l ), m</td>
<td>0.044</td>
</tr>
<tr>
<td>Stiffness of elastic elements ( C ), N/m</td>
<td>3900</td>
</tr>
<tr>
<td>- along the axis ( OX ): ( C )</td>
<td>3900</td>
</tr>
</tbody>
</table>

The experimental study of ranges of amplitude-frequency characteristics at which energy consumption will be rational was carried out at Vinnytsia National Agrarian University using the laboratory model of a rotary vibration crusher [6].

To record the angular velocity values of the drive shaft, the UNI-T UT372 wireless tachometer (Uni-Trend Technology Limited, Dongguan, China) was used. To manage and change rotation frequencies of the motor shaft (up 0 to 500 s\(^{-1}\) with step 5 s\(^{-1}\)), the AOSN-20-220-75 (PJSJ «Megomometer», Uman, Ukraine) autotransformer was used [26]. To determine the energy consumption to drive the crusher, the EMF-1 (ELTIS Electric, Lviv, Ukraine) electronic wattmeter was used [20]. The operating principle and operating rules for these devices are described in the technological documentation. To record the amplitude-frequency characteristics of the vibratory disk crusher, a sensor based on the ST Microelectronics LIS3DH accelerometer was developed [8, 27].

Taking into account the permissible errors of the measuring equipment [28], a critical value of the discrepancy between the experimental and theoretical research was taken by 15% [20]. Exceeding this boundary indicates the unreliability of the mathematical model and the inability to use it when designing a crusher of this type. Processing and analysis of the research results were carried out in the Microsoft Excel 2019 software environment.

**Research results**

To determine the linear velocity of the centres of mass of structural elements of oscillatory system we will divide the mechanism into elementary components are links and we will study them separately [15, 29]. Velocity \( V_1, V_2, V_3, V_4 \) for the generalized mass \( S_1 \) (container), \( S_2 \) (rotor), \( S_3 \) (disc), \( S_4 \) (counterweight) (Fig. 2), m s\(^{-1}\):

\[
V_1 = \sqrt{x_1^2 + z_1^2},
\]

\[
V_2 = \sqrt{x_2^2 + y_2^2 + 2y_2v_2x_2 \cos \phi_2}.
\]

\[
V_3 = \sqrt{v_3^2 + v_3^2 + 2v_3x_3 \cos \psi_3};
\]

\[
V_4 = \sqrt{x_4^2 + y_4^2 + 2y_4v_4 \cos \phi_4};
\]

where \( x_1, z_1 \) – the velocity \( S_1 \) along with the axis \( OX \) and \( OZ \), m s\(^{-1}\); \( v_2, v_3, v_4 \) – respectively the relative velocity of \( S_2 \) (the moving coordinate system – \( x_1y_1z_1 \)), \( S_3 \) (the moving coordinate system – \( x_2y_2z_2 \)) and \( S_4 \) (the moving coordinate system – \( x_3y_3z_3 \)); \( \psi_3 \) and \( \phi_4 \) – respectively the angle between the vectors \( \vec{v}_2, \vec{v}_3, \vec{v}_4 \) and \( \vec{v}_{x_2}, \vec{v}_{y_2}, \vec{v}_{z_2} \), rad.

\[
v_{x_1} = \phi_1 \cdot \nu_1 \cdot \dot{\nu}_x; \quad v_{z_1} = \dot{\omega}_1 \cdot \nu_1; \quad v_{y_2} = \sqrt{v_{x_2}^2 + v_{y_2}^2 + 2v_{x_2}v_{y_2} \cos \phi_2};
\]

\[
\text{where: } \phi_1 \text{ – distance from } S_2 \text{ to the axis } 0y_1; \; \psi_3 \text{ – the angular velocity of the rotor; } \phi_4 \text{ – displacement of the } S_3 \text{ relative to fixed axes } OX \text{ and } OZ; \; \nu_1 \text{ – the angular velocity } \; \nu_{x_2} \text{ – the relative velocity of cutting edge (the moving coordinate system – } x_1y_1z_1); \; \nu_{z_2} \text{ – the frame velocity of the cutting edge and coordinate system – } x_2y_2z_2; \; \nu_{x_3} \text{ – the angle between the vectors } \vec{v}_{x_3} \text{ and } \vec{v}_{y_3}; \; l \text{ – distance from } S_4 \text{ to the axis } 0y_1; \; m \text{ – the distance from the edge of the crusher disc to the axis } 0y_1; \; \nu_{x_3} \text{ – displacement of the } S_3 \text{ relative to fixed axes } OX \text{ and } OZ; \; \nu_{x_3} \text{ – the transfer coefficient of torque (} k \nu = 0 \ldots 1 \).

When rotating the working rotor equipment between the edge crussh disc and material, the friction forces \( F_{ra} \), the rotation is working disk is only possible where \( F_{ra} > F_{fr} \). \( F_{fr} \) is the friction forces in conjunction with friction «crusher disk – disk axis» [12]. If there is \( k \nu = 1 \) an increase \( F_{ra} \), whereas at \( k \nu = 0 \), \( F_{fr} \) is equal to zero, and as a result \( \phi_3 = 0 \) [12, 24]. If \( k \nu > 0 \), when

\[
\phi_3 = \frac{\phi_1 \cdot r_{sup}}{R \cdot k \nu};
\]

\[
V_{ra} = \sqrt{V_{x_2}^2 + V_{z_2}^2}.
\]

where: \( r_{sup} \) – the radius of the support disk, \( m \); \( \nu_1 \) – the distance from the edge of the crussh disc to the axis \( 0y_1 \); \( m \); \( x_2 \), \( z_3 \) – displacement of the \( S_3 \) relative to fixed axes \( OX \) and \( OZ \), m;

\[
\text{Equation (3-6) for velocities } V_{1,4}, \text{ takes the form:}
\]

\[
V_1 = \sqrt{x_1^2 + z_1^2};
\]

\[
V_3 = \sqrt{(r_d \cdot \phi_3 \cdot k \nu)^2 + (r \cdot \phi_2)^2 + (x_3^2 + z_3^2 \cdot \phi_2^2) + 2(r \cdot \phi_2 x_3 - r_d \cdot \phi_3 \cdot k \nu)(2x_3 + r \cdot \phi_2)};
\]

\[
V_4 = \sqrt{(l \cdot \phi_2)^2 + (x_4^2 + z_4^2 \cdot \phi_2) + 2l \cdot \phi_2 x_4};
\]

Total kinetic energy of the system:

\[
\text{T} = \frac{1}{2} m_1(x_1^2 + z_1^2) + \frac{1}{2} m_2[(e \cdot \phi_2)^2 + (x_2^2 + z_2^2 \cdot \phi_2^2) + 2 \cdot e \cdot \phi_2 x_1 + 2 \cdot e \cdot \phi_2 x_2 + (x_1^2 + z_1^2 \cdot \phi_2^2) + 2(r \cdot \phi_3 \cdot k \nu)(2x_3 + r \cdot \phi_2) - 2(r_d \cdot \phi_3 \cdot k \nu) x_1];
\]

Table 1. Numerical values of the main constants adopted for the studied system
The generalized force can be interpreted as a coefficient before the variation of the generalized coordinate in the expression for the sum of the elementary works of all active forces.

Using the calculation scheme in Fig. 1b generalized forces can be identified:

\[
\begin{align*}
Q &= (m_2 + m_3)\omega_t^2 \cos(\omega_t \cdot t) - m_1\omega_t^2 t \\
Q &= (m_2 + m_3)\omega_t^2 \sin(\omega_t \cdot t) - \left(\sin(\omega_t \cdot t) - (m_1 + m_2 + m_3 + m_4)g - c_2 z\right) \\
Q &= (M_{kp} + m_2\omega_t^2)^2 \sin(\omega_t \cdot t) - m_4\omega_t^2 t \\
Q &= \left(M_{kp}^2 - m_{in2}\right) \cdot k_u
\end{align*}
\]

where \(c_1, c_2\) - the stiffness of the elastic elements along the respective axes.

Using the MathCad 15.0 software environment, first and second parts for expressions of equation (1) were solved analytically. Therefore, expressions of equation (1) will take the following form:

\[
\begin{align*}
x &= \frac{\phi_2(m_2 + m_3 + m_4) + c_2}{m_1} \cos(\omega_t \cdot t) \\
&+ \frac{m_2\phi_2^2}{m_1} + \frac{m_2 \cdot r \cdot \phi_2}{m_1} - \frac{2k_u \cdot r \cdot \phi_2 + m_4 \cdot \phi_2}{m_1},
\end{align*}
\]

Taking into account the equation (32) and (33):

\[
A = \sqrt{A_x^2 + A_y^2}
\]

By solving the obtained equations as linear differential equations of the second order with constant coefficients, the dependences of the motion of the executive body of the studied machine are obtained. Due to the scattering of energy in the system under study, the free oscillations are damped, as a result of which the obtained equations for the steady-state will take the form [17, 23]:

\[
\begin{align*}
x &= \frac{\phi_2(m_2 + m_3 + m_4) + c_2}{m_1} \cos(\omega_t \cdot t) \\
&+ \frac{m_2\phi_2^2}{m_1} + \frac{m_2 \cdot r \cdot \phi_2}{m_1} - \frac{2k_u \cdot r \cdot \phi_2 + m_4 \cdot \phi_2}{m_1},
\end{align*}
\]

The absolute amplitude of oscillations:

\[
A = \sqrt{A_x^2 + A_y^2}
\]

Using the MathCad 15.0 software environment, first and second parts for expressions of equation (1) were solved analytically. Therefore, expressions of equation (1) will take the following form:

\[
\begin{align*}
x &= \frac{\phi_2(m_2 + m_3 + m_4) + c_2}{m_1} \cos(\omega_t \cdot t) \\
&+ \frac{m_2\phi_2^2}{m_1} + \frac{m_2 \cdot r \cdot \phi_2}{m_1} - \frac{2k_u \cdot r \cdot \phi_2 + m_4 \cdot \phi_2}{m_1},
\end{align*}
\]

The solutions of equations (23) and (24) will be found for both second-order linear differential equations with constant coefficients, assuming that \(\phi_2 = \omega_2\). The dissipation coefficients of this system can be represented as [17]:

\[
\gamma = 2\sqrt{k_2 - \omega_2^2}; \quad \xi = 2\sqrt{k_2 - \omega_2^2}
\]

Specific modulus of forcing force (Lanets et al., 2019):
Power developed by the forcing force:

\[ N_F = F_m \cdot v. \]  

Power consumption for friction [20]:

\[ N_{fr} = 0.5 \cdot F \cdot \mu \cdot d_{sh} \cdot \omega^2, \]

where: \( \mu = 0.05 \ldots 0.08 \) – coefficient of friction; \( d_{sh} \) – the diameter of the drive shaft \( (d_{sh} = 0.04 \text{ m}) \).

For further analysis, we used the numerical values of constants and other experimental data obtained as a result of exploratory research on the basis in laboratory Vinnytsia National Agrarian University. The software algorithm that was created to analyze the amplitude-frequency ranges of the crusher and estimate the energy consumption of the drive is based on developed mathematical model, which is presented in the form of differential equations (17-38), which were entered into the working field of the software environment MathCad 15.0 [6]. Visualization of the obtained results is carried out in the form of an array of numerical values, three-dimensional graphs of amplitude-frequency and energy characteristics. In fig. 3 shows a fragment of the listing for automated determination of influence of design and technological parameters on the values amplitude of vibrations, vibration speed, vibration acceleration, vibration intensity and power consumption of the drive.

As a result of mathematical analysis of compound equations of motion in the software environment MathCad 15.0, graphical dependencies for the main kinematic characteristics of the studied equipment are obtained (Fig. 4).

Theoretical analysis of the presented differential equations of motion of the executive equipment’s of the developed vibrating disk crusher and graphical dependences (Fig. 4) are showed that during its operation without material supply, the resonant mode on the axis OZ to \( A_Z = 3.9 \text{ mm} \), on the axis OX-Ax = 2.25 mm at an angular velocity of the drive shaft 70 rad s\(^{-1}\). As a result, the peak values of the total amplitude of oscillations are observed at 70 rad s\(^{-1}\) and are \( A = 4.5 \text{ mm} \) (Fig. 4a).

Analyzing the graphical dependence of the vibration speed on the angular velocity of the drive shaft operating modes are observed at values up to 0.3 m s\(^{-1}\) at 71 rad s\(^{-1}\), peak values are observed in resonant mode at 150 s\(^{-1}\) (Fig. 4b), and are 0.5 m s\(^{-1}\). Considering the graphical dependence of vibration acceleration (Fig. 4c) on angular velocity, the maximum value of 82 m s\(^{-2}\) is observed at 150 s\(^{-1}\).

Further analysis of the mathematical model in the use a wide range of analytics tools in the MathCad 15.0 software allowed to theoretically determine the operating frequency range of the vibrating disc crusher, in which the value of power consumption is close to the most rational values [6] and is \( N = 650 \ldots 750 \text{ W} \); \( \omega = 100 \ldots 115 \text{ rad} / \text{s} \), \( A = 3 \ldots 3.1 \text{ mm} \), \( v = 0.28 \ldots 0.31 \text{ m} / \text{s} \), \( a = 40 \ldots 43 \text{ m} / \text{s}^2 \).

To verify the mathematical model, a series of experimental studies were performed and the real values of the amplitude-frequency characteristics of the developed equipment were established [20]. Experimental and theoretical graphs of the distribution of the main parameters of the studied system are presented (Fig. 5).

Thus, it was found that the discrepancy between theoretical and experimental results is 7.2–12.1% and does not exceed the recommended value for vibratory crushers (up to 15%).

Conclusions

The result of the analysis of the proposed mathematical model of the vibrating crusher is the analytical and graphical dependences of the main kinematic parameters of oscillations. Recommended crusher operating parameters:

\[ \omega = 100 \ldots 115 \text{ s}^{-1}, \ A = 3.1 \ldots 3.2 \text{ mm}, \ v = 0.28 \ldots 0.31 \text{ m} / \text{s}, \]
a=40..43 m/s². The energy consumption for the crusher drive is N=650..750 W. The peak values of the total amplitude in the resonant mode are Ae=4.5 mm at ω=70 s⁻¹.

The comparative analysis of deviations of theoretical and experimental research on power and amplitude-frequency parameters of the developed equipment revealed a discrepancy of the received values within 7.2–12.1% that confirms the adequacy of the developed mathematical models. So, the proposed mathematical model with sufficient accuracy and reliability reflects the modes of oscillation of the machine and can be used when substantiating the parameters of the vibrating disc crusher.

**Funding**

This research was supported and funded by the Ministry of Education and Science of Ukraine under grant No 0121U108589.

**Authors:** HONCHARUK Inna – Dr. Sc. in Economics, Professor, Vice-rector for Scientific Research, pedagogical and innovative activity, Vinnytsia National Agrarian University (21008, 3 Sonyachna str., Vinnytsia, Ukraine, e-mail: vnauauka2020@gmail.com); KUPCHUK Ihor – PhD in Engineering, Associate Professor, Deputy Dean for Scientific Research, Faculty of Engineering and Technology, Vinnytsia National Agrarian University (21008, 3 Sonyachna str., Vinnytsia, Ukraine, e-mail: kupchuk.ukm@gmail.com); YAROPUD Vitalii – PhD in Engineering, Associate Professor, Dean of the Faculty of Engineering and Technology, Vinnytsia National Agrarian University (21008, 3 Sonyachna str., Vinnytsia, Ukraine, e-mail: yaropud77@gmail.com); PASCUZZI Silvano – Dr. Sc. in Pedagogy, Associate Professor, Head of the Department of Ukrainian and Foreign Languages, Vinnytsia National Agrarian University (21008, 3 Sonyachna str., Vinnytsia, Ukraine, e-mail: krawezi@ukr.net).

**REFERENCES**


[22] Rutkevych V., Kupchik I., Yanopud V., Hrania V., Burlaka S. Numerical simulation of the liquid distribution problem by an


